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Abstract In this paper, various regularization methods are numerically implemented using the
boundary element method (BEM) in order to solve the Cauchy steady-state heat conduction
problem in an anisotropic medium. The convergence and the stability of the numerical methods are
investigated and compared. The numerical results obtained confirm that stable numerical results
can be obtained by various regularization methods, but if high accuracy is required for the
temperature, or if the heat flux is also required, then care must be taken when choosing
the regularization method since the numerical results are substantially improved by choosing the
appropriate method.

1. Introduction
Many natural and man-made materials cannot be considered isotropic and the
dependence of the thermal conductivity with direction has to be taken into
account in the modelling of the heat transfer. For example, crystals, wood,
sedimentary rocks, metals that have undergone heavy cold pressing, laminated
sheets, composites, cables, heat shielding materials for space vehicles, fibre
reinforced structures, and many others are examples of anisotropic materials.
Composites are of special interest to the aerospace industry because of their
strength and reduced weight. Therefore, heat conduction in anisotropic
materials has numerous important applications in various branches of science
and engineering and hence its understanding is of great importance.

If the temperature or the heat flux on the surface of a solid V is given, then
the temperature distribution in the domain can be calculated, provided the
temperature is specified at least at one point. However, in the direct problem,
many experimental impediments may arise in measuring or in the enforcing of
the given boundary conditions. There are many practical applications which
arise in engineering where a part of the boundary is not accessible for
temperature or heat flux measurements. For example, the temperature or the
heat flux measurement may be seriously affected by the presence of the sensor
and hence there is a loss of accuracy in the measurement, or, more simply, the
surface of the body may be unsuitable for attaching a sensor to measure
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the temperature or the heat flux. The situation when neither the temperature
nor the heat flux can be prescribed on a part of the boundary while both of them
are known on the other part leads in the mathematical formulation to an
ill-posed problem which is termed as “the Cauchy problem”.

This problem is much more difficult to solve both numerically and
analytically since its solution does not depend continuously on the prescribed
boundary conditions. Violation of the stability of the solution creates serious
numerical problems since the system of linear algebraic equations obtained by
discretising the problem is ill-conditioned. Therefore, a direct method to solve
this problem cannot be used since such an approach would produce a highly
unstable solution. A remedy for this is the use of regularization methods which
attempt to find the right compromise between accuracy and stability.

Currently, there are various methods to deal with ill-posed problems.
However, their performance depends on the particular problem being solved.
Therefore, it is the purpose of this paper to investigate and compare several
regularization methods for a Cauchy anisotropic heat conduction problem.
There are different methods to solve an ill-posed problem such as the Cauchy
problem. One approach is to use the general regularization methods such as
Tikhonov regularization, truncated singular value decomposition, conjugate
gradient method, etc. On the other hand, specific regularization methods can be
developed for particular problems in order to make use of the maximum
amount of information available. The use of any extra information available for
a specific problem is particularly important in choosing the regularization
parameter of the method employed. Both general regularization and specific
regularization methods developed for the Cauchy problems are considered in
this paper.

These methods are investigated and compared in order to reveal their
performance and limitation. All the methods employed are numerically
implemented using the boundary element method (BEM) since it was found
that this method performs better for linear partial differential equations with
constant coefficients than other domain discretisation methods. Numerical
results are given in order to illustrate and compare the convergence, accuracy
and stability of the methods employed.

2. Mathematical formulation
Consider an anisotropic medium in an open bounded domain V , R2 and
assume that V is bounded by a curve G which may consist of several segments,
each being sufficiently smooth in the sense of Liapunov. We also assume that
the boundary consists of two parts, ›V ¼ G ¼ G1 < G2; where G1;G2 – Y and
G1 > G2 ¼ Y: In this study, we refer to steady heat conduction applications in
anisotropic homogeneous media and we assume that heat generation is absent.
Hence the function T, which denotes the temperature distribution in V, satisfies
the anisotropic steady-state heat conduction equation, namely,

Different
regularization

methods

529



LT ¼
X2

i; j¼1

kij
›2T

›xi ›xj

¼ 0; x [ V ð1Þ

where kij is the constant thermal conductivity tensor which is assumed to be
symmetric and positive-definite so that equation (1) is of the elliptic type. When
kij ¼ dij; where dij is the Kronecker delta symbol, we obtain the isotropic case
and T satisfies the Laplace equation

72TðxÞ ¼ 0; x [ V ð2Þ

In the direct problem formulation, if the temperature and/or heat flux on the
boundary G is given then the temperature distribution in the domain can be
calculated, provided that the temperature is specified at least at one point.
However, many experimental impediments may arise in measuring or
enforcing a complete boundary specification over the whole boundary G. The
situation when neither the temperature nor the heat flux can be prescribed on a
part of the boundary while both of them are known on the other part leads to
the mathematical formulation of an inverse problem consisting of equation (1)
which has to be solved subject to the boundary conditions

TðxÞ ¼ f ðxÞ for x [ G1 ð3Þ

›T

›nþ
ðxÞ ¼ qðxÞ for x [ G1 ð4Þ

where f,q are prescribed functions, ›=›nþ is given by

›

›nþ
¼
X2

i; j¼1

kij cosðn; xiÞ
›

›xj

ð5Þ

and cos (n,xi) are the direction cosines of the outward normal vector n to the
boundary G. In the above formulation of the boundary conditions (3) and (4) it
can be seen that the boundary G1 is overspecified by prescribing both the
temperature f and the heat flux q, whilst the boundary G2 is underspecified
since both the temperature TjG2

and the heat flux

›T

›nþ
jG2

are unknown and have to be determined.
This problem, termed the Cauchy problem, is much more difficult to solve

both analytically and numerically than the direct problem since the solution
does not satisfy the general conditions of well-posedness. Although the
problem may have a unique solution, it is well-known (Hadamard, 1923) that
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this solution is unstable with respect to the small perturbations in the data on
G1. Thus, the problem is ill-posed and we cannot use a direct approach, e.g.
Gaussian elimination method, to solve the system of linear equations which
arise from discretising the partial differential equations (1) or (2) and the
boundary conditions (3) and (4). Therefore, regularization methods are required
in order to accurately solve this Cauchy problem.

3. Regularization methods
3.1 Truncated singular value decomposition
Consider the ill-conditioned system of equations

CX ¼ d ð6Þ

where C [ RM£N ; X [ RN ; d [ RM and M $ N .
The singular value decomposition (SVD) of the matrix C [ RM£N is given

by

C ¼ WXVT ¼
XN

i¼1

wisiv
T
i ð7Þ

where W ¼ col½w1; . . .;wM � [ RM£M ; and V ¼ col½v1; . . .; vN � [ RN£N are
orthogonal matrices

X ¼
S

0M2N

 !
if M . N

X ¼ S if M ¼ N

and the diagonal matrix S ¼ diag½s1; . . .;sN � has a non-negative diagonal
elements ordered such that

s1 $ s2 $ s3 $ . . . $ sN $ 0 ð8Þ

The non-negative quantities si are called the singular values of the matrix C:
The number of positive singular values of C is equal to the rank of the
matrix C: In the ideal setting, without perturbation and rounding errors, the
treatment of the ill-conditioned system of equation (6) is straightforward,
namely, we simply ignore the SVD components associated with the zero
singular values and compute the solution of the system by means of

X ¼
XrankðCÞ

i¼1

wT
i d

si

v i ð9Þ

In practice, noise is always present in the problem and the vector d and the
matrix C are only known approximately. Therefore, if some of the singular
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values of C are non-zero, but very small, instability arises due to division by
these small singular values in expression (9). One way to overcome this
instability is to modify the inverses of the singular values in expression (9) by
multiplying them by a regularizing filter function fl(si) for which the product
f lðsÞ=s! 0 as s! 0: This filters out the components of the sum (9)
corresponding to small singular values and yields an approximation for the
solution of the problem with the representation

Xl ¼
XrankðCÞ

i¼1

flðsiÞ

si

ðwT
i dÞv i ð10Þ

To obtain some degree of accuracy, one must retain singular components
corresponding to large singular values. This is done by taking f lðsÞ < 1 for
large values of s. An example of such a filter function is

flðsÞ ¼
1 if s2 . l

0 if s2 # l

(
ð11Þ

The approximation (10) then takes the form

Xl ¼
s 2

i
.l

X 1

s i

ðwT
i dÞv i ð12Þ

and it is known as the truncated singular value decomposition (TSVD) solution
of the problem (6). For different filter functions, fl, different regularization
methods are obtained, see Section 3.2. A stable and accurate solution is then
obtained by matching the regularization parameter l to the level of the noise
present in the problem to be solved.

3.2 Tikhonov regularization
In this section, we give a brief description of the Tikhonov regularization
method. For further details on this method, we refer the reader to Tikhonov and
Arsenin (1977) and Tikhonov et al. (1995).

Again consider the ill-conditioned system of equation (6). The Tikhonov
regularized solution of the ill-conditioned system (6) is given by

Xl : TlðXlÞ ¼ min{TlðXÞjX [ RN } ð13Þ

where Tl represents the Tikhonov functional given by

TlðXÞ ¼ kCX 2 dk
2
2 þ l2kLXk

2
2 ð14Þ

and L [ RN£N induces the smoothing norm kLXk2 with l [ R, the
regularization parameter to be chosen. The problem is in the standard form,
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also referred to as Tikhonov regularization of order zero, if the matrix L is the
identity matrix IN [ RN£N :

Formally, the Tikhonov regularized solution Xl is given as the solution of
the regularized equation

ðCTCþ l2LTLÞX ¼ CTd ð15Þ

However, the best way to solve equation (13) numerically is to treat it as a least
squares problem of the form

Xl : TlðXlÞ ¼
X[RN
min

C

lL

 !
X 2

d

0

 !�����
�����

2

ð16Þ

Regularization is necessary when solving inverse problems because the simple
least squares solution obtained when l ¼ 0 is completely dominated by the
contributions from the data and rounding errors. By adding regularization, we
are able to damp out these contributions and maintain the norm kLXk2 to be of
reasonable size. If too much regularization, or smoothing, is imposed on the
solution, then it will not fit the given data d and the residual norm kCX 2 dk2

will be too large. If too little regularization is imposed on the solution, then the
fit will be good, but the solution will be dominated by the contributions from
the data errors, and hence kLXk2 will be too large. In this paper, we assume
that L ¼ IN ; i.e. we consider Tikhonov regularization of order zero.

If we insert the SVD (7) into the least squares formulation (15), then we
obtain

VðX2 þ l2IÞVTXl ¼ VXTWTd ð17Þ

Solving equation (17) for Xl, we obtain

Xl ¼
�
VðX2 þ l2IÞVT

�þ
VXWTd ¼ VðX2 þ l2IÞþXWTd ð18Þ

where + denotes the Moore-Penrose pseudo inverse of a matrix. On substituting
the matrices W;V and X into equation (18), we obtain the regularized solution,
as a function of the left and right singular vectors and the singular values, as
follows:

Xl ¼
XN

i¼1

flðsiÞ

si

ðwT
i dÞv i ð19Þ

where fl are the Tikhonov filter factors given by

flðsiÞ ¼
s 2

i

s 2
i þ l2

ð20Þ
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It should be noted that the Tikhonov filter factors, as defined earlier, depend on
both the singular values si and the regularization parameter l, and fi<1, if
si q l; and fi < s 2

i =l
2, if si p l. In particular, the basic least squares

solution XLS is given by equation (19) with the regularization parameter l ¼ 0
and the Tikhonov filter factors fi ¼ 1 for i¼1,. . .,M. Hence, comparing the
regularized solution Xl with the least squares solution XLS, we see that the
filter factors practically filter out the contributions to the solution
corresponding to small singular values, whilst they leave the SVD
components corresponding to large singular values almost unaffected.
Moreover, damping sets in for si < l:

3.3 Conjugate gradient method
In this section, we describe a variational method that can be applied to solve the
Cauchy problem. Since the boundary condition at G2 is to be determined, we
consider it as a control v [ L2ðG2Þ in a direct problem formulation to fit the
Cauchy data f [ L2ðG1). Thus, we consider the direct problem

LT ¼ 0 ð21Þ

T jG2
¼ v ð22Þ

›T

›nþ
jG1

¼ q ð23Þ

with q[ L 2(G1). Assuming that G is a Lipschitzian boundary consisting of two
non-intersecting closed curves, G1 and G2, we note that since q[ L 2(G1) and
v [ L2ðG2), there is a unique solution T(q,v) of the direct problems (21)-(23)
(Lions and Magenes, 1972). Then we aim to find v such that

Av :¼ Tðq; vÞjG1
¼ f ð24Þ

In doing so, we try to minimise the functional

J ðvÞ ¼
1

2
kAv 2 fk

2
L 2ðG1Þ

ð25Þ

It has been established (Hao and Lesnic, 2000), that this functional is twice
Frechet differentiable and its gradient can be calculated as

J 0ðvÞ ¼ 2
›c

›nþjG2

ð26Þ

where c is the solution of the adjoint problem

Lc ¼ 0 ð27Þ
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cjG2
¼ 0 ð28Þ

›c

›nþ
jG1

¼ Tðq; vÞjG1
2 f ð29Þ

Thus, the conjugate gradient method applied to our problem has the form of the
following algorithm.

(i) Specify an initial guess v0 for the temperature on G2 and set k ¼ 0.

(ii) Solve the direct problems (21)-(23) with v¼vk and determine the residual

~rk :¼ Avk 2 f ð30Þ

(iii) Determine the gradient rk by solving the adjoint problems (27)-(29) with

›ck

›nþjG1

¼ ~rk ð31Þ

then calculate dk¼2rk+bk21dk21, with the convention that b21 ¼ 0 and

bk21 ¼
krkk

2

krk21k
2

ð32Þ

(iv) Determine A0dk ¼ Tð0; dkÞjG1
by solving the problems (21)-(23) with

q ¼ 0 and v ¼ dk;

vkþ1 ¼ vk þ jkdk; ð33Þ

jk ¼
krkk

2

kA0dkk
2
¼

krkk
2

kTð0; dkÞjG1
k

2
ð34Þ

(v) Increase k by one and go to (ii) until a prescribed stopping criterion is
satisfied.

It is known that, in general, the conjugate gradient method produces a stable
solution for ill-posed problems, provided that a regularizing stopping criterion
is used. The performance of this method for the Cauchy problem for anisotropic
heat conduction is investigated and compared with other regularization
methods in Section 5.

3.4 An alternating iterative algorithm
Apart from general regularization methods, which can be applied for solving
any ill-posed problems, typical solution methods may be developed for
particular ill-posed problems. In this section, we describe such a particular
regularization algorithm developed for Cauchy problems. The algorithm uses
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the fact that a part of the boundary is overspecified and the remainder is
unspecified in order to reduce the ill-posed problem to a sequence of well-posed
problems by alternating the given data on the overspecified part of the
boundary. This iterative algorithm was first proposed by Kozlov and Mazya
(1990) and consists of the following steps.

(i) Specify an initial boundary temperature guess u0 on G2.

(ii) Solve the mixed well-posed direct problem

X2

i; j¼1

kij

›2T ð0Þ

›xi ›xj

¼ 0 ð35Þ

T ð0Þ
jG2

¼ u0;
›T ð0Þ

›nþ
jG1

¼ q ð36Þ

to determine T ð0ÞðxÞ for x [ V and n0 ¼
›T ð0Þ

›nþ jG2
:

(iii) (a) If the approximation T (2k) is constructed, solve the mixed well-posed
direct problem

X2

i; j¼1

kij
›2T ð2kþ1Þ

›xi ›xj

¼ 0 ð37Þ

T ð2kþ1Þ
jG1

¼ f ;
›T ð2kþ1Þ

›nþ
jG2

¼ nk ð38Þ

to determine T ð2kþ1ÞðxÞ for x [ V and ukþ1 ¼ T ð2kþ1ÞjG0
:

(b) Having constructed T (2k+1), solve the mixed well-posed direct
problem

X2

i; j¼1

kij
›2T ð2kþ2Þ

›xi ›xj

¼ 0 ð39Þ

Tð2kþ2Þ
jG2

¼ ukþ1;
›T ð2kþ2Þ

›nþ
jG1

¼ q ð40Þ

to determine T ð2kþ2ÞðxÞ for x [ V and

nkþ1 ¼
›T ð2kþ2Þ

›nþ
jG2

(iv) Repeat step (iii) for k $ 0 until a prescribed stopping criterion is satisfied.
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According to Kozlov and Mazya (1990), the above algorithm produces two
sequences of approximate solutions, namely {T ð2kÞðxÞ}k$0 and {T ð2kþ1ÞðxÞ}k$0;
which both converge in H 1(V) to the solution T of the Cauchy problem given
by equations (1), (3) and (4) for any initial guess u0 [ H 1=2ðG2Þ.

We note that, provided the initial guess u0 is in H 1/2(G2) and the boundary
data f and q are in H 1/2(G1) and H 1/2(G1)*, respectively, the problems given at
step (iii) of the algorithm are both well-posed and uniquely solvable in H 1(V)
(Lions and Magenes, 1972). These intermediate mixed well-posed problems are
solved using the BEM described in Section 4.

The same conclusions about the convergence and the regularizing character
are obtained, if at the step (i) we specify an initial guess for the heat flux
n0 [ H 1=2ðG2Þ* ; instead of an initial guess for the temperature u0 [ H 1=2ðG2Þ;
and we modify accordingly the steps (ii) and (iii) such that the mixed problems
are solved. The algorithm did not converge, if in the steps (ii) and (iii) the mixed
problems were replaced by Dirichlet or Neumann problems. In addition, the
Neumann direct problem itself is ill-posed due to the non-uniqueness or
non-existence of the solution, if the integral of the heat flux q over the boundary
G vanishes or not, respectively.

A detailed numerical implementation of this algorithm may be found in
Mera et al. (2000), where it was shown that, if a regularizing stopping criterion
is used, then the iterative algorithm produces a convergent and stable
numerical solution for the Cauchy problem considered. Therefore, only those
features necessary to compare this iterative algorithm with other regularization
methods are presented in this paper.

4. The BEM
BEM (Chang et al., 1973; Wrobel, 2002) is used to discretise the Cauchy problem
considered. One way of dealing with the anisotropicity is to transform the
governing partial differential equation (1) into its canonical form by changing
the spatial coordinates. However, after the transformation, the domain deforms
and rotates and the boundary conditions become, in general, more complicated
than the original ones. Therefore, rather than adopt this approach, we use the
fundamental solution for the differential operator L of the equation (1) in its
original form. By using the fundamental solution of the heat equation and
Green’s identities, the governing partial differential equation (1) is transformed
into the following integral equation (Chang et al., 1973)

h ðxÞTðxÞ ¼

Z
G

Gðx; x 0Þ
›T

›nþ
ðx 0Þ2 Tðx 0Þ

›G

›nþ
ðx; x 0Þ

	 

dGx0 ð41Þ

where

(1) x [ �V; x 0 [ G;

(2) hðxÞ ¼ 1, if x [ V and hðxÞ ¼ 1
2, if x [ G (smooth),
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(3) dGx0 denotes the differential increment of G at x 0

(4) G is the fundamental solution of equation (1), namely,

Gðx; x 0Þ ¼ 2
jkijj

1
2

2p
lnðRÞ ð42Þ

where k ij is the inverse matrix to the matrix kij and the geodesic distance R is
defined by

R 2 ¼
X2

i; j¼1

kijðxi 2 x 0
iÞðxj 2 x 0

jÞ: ð43Þ

In practice, the boundary integral equation (41) may rarely be solved
analytically and thus some form of numerical approximation is necessary.
Generically, if the boundaries G1 and G2 are discretised into N1 and N2

boundary elements, then equation (41) reduces to solving the following system
of linear algebraic equations

AT 0 2 BT ¼ 0 ð44Þ

where A and B are matrices which depend solely on the geometry of the
boundary G and can be calculated analytically. The vectors T and T 0 are the
discretised values of the temperature and heat flux, respectively, which are
assumed to be constant over each boundary element and take their values at
the midpoint of each element. Equation (44) represents a system of N linear
algebraic equations with 2N unknowns, where N ¼ N 1 þ N 2: The
discretisation of the boundary conditions given by equations (3) and (4)
provides the values of 2N1 of the unknowns and the problem reduces to solving
a system of N 1 þ N 2 equations with 2N2 unknowns, which generically can be
written as

CX ¼ d ð45Þ

where d is computed using the boundary conditions (3) and (4), the matrix C
depends solely on the geometry of the boundary G and the unknown vector X
contains the values of the temperature and the heat flux on the boundary G1.
In order to determine the system of equation (45), we need to have N 1 $ N 2 or
measðG1Þ $ measðG2Þ; which is in fact a necessary condition for the Cauchy
problem to be numerically identifiable, when the mesh discretisation is
uniform.

5. Numerical results and discussion
In order to illustrate the performance of the numerical method proposed,
we solve a Cauchy problem in a two-dimensional smooth geometry such as
the unit disc V ¼ {ðx; yÞj x2 þ y2 , 1}: We assume that the boundary
G ¼ {ðx; yÞj x2 þ y2 ¼ 1} of the solution domain is divided into two disjoint
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parts, namely, G1 ¼ {x ¼ ðx; yÞj x [ G; uðxÞ # a} and G2 ¼ {x ¼ ðx; yÞj
x [ G; uðxÞ . a} and where uðxÞ is the angular polar coordinate of x and a is a
specified angle in the interval (0, 2p). In order to illustrate the typical numerical
results, we have taken a ¼ 3p=2: Various values may be prescribed for a, but
a necessary condition for the inverse Cauchy problem to be numerically
identifiable when a uniform mesh discretisation is adopted is that measðG1Þ $
measðG2Þ; i.e. a $ p:

The most significant quantity to characterize the anisotropy of a medium is
the determinant of the conductivity coefficients, i.e. jkijj ¼ k11k22 2 k2

12: The
smaller the value of jkijj; the more asymmetric are the temperature fields and
the heat flux vectors and the more difficult is the numerical calculation (Chang
et al., 1973). We consider a typical benchmark example which governs the
steady heat conduction in a two-dimensional anisotropic medium with the
thermal conductivity tensor kij given by k11 ¼ 1:0; k12 ¼ k21 ¼ 0:5 and k22 ¼
1:0; and the analytical temperature distribution to be retrieved, given by
Tðx; yÞ ¼ x2 2 4xy þ y2.

5.1 Direct approach
The system of linear equation (45) cannot be solved by a direct approach, such
as a Gaussian elimination method, since the sensitivity matrix C is
ill-conditioned. The condition number condðCÞ ¼ detðCCTÞ of the sensitivity
matrix C was calculated using the NAG subroutine F03AAF (NAG Fortran
Library Manual, 1991), which evaluates the determinant of a matrix using the
Crout factorisation method with partial pivoting. The condition number of the
system of equation (45) was found to be O(10286) and O(102251) for N ¼ 40
and 80 boundary elements while for numbers of boundary elements exceeding
N ¼ 160, the matrix ðCCTÞ was found to be approximately singular, the value
of its determinant becoming uncomputable, thus revealing the high degree of
ill-posedness of the Cauchy problem being investigated. Thus, a direct
approach to the problem produces a highly unstable solution and that is why
regularization methods, such as those presented here, must be used.

5.2 Discrepancy principle
The accuracy of the numerical solution Xl obtained by using the regularization
methods based on the singular value decomposition of the problem clearly
depends on the choice of the parameter l which is known as the regularization
parameter. Therefore, in order to obtain an accurate solution for an
ill-conditioned problem, it is important to choose the regularization
parameter that gives the right balance between the accuracy and the
stability of the numerical solution. Currently, there are various criteria
available for choosing the regularization parameter, but the most widely used
is the discrepancy principle of Morozov (1966).

According to this principle, the regularization parameter should be chosen
such that
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kCXl 2 dk < d ð46Þ

where d is an estimate of the level of noise present in the problem, i.e.

d ¼ kd 2 d[
k ð47Þ

where d[ is the perturbed value of the right hand side of the system of
equation (6).

For the iterative regularization methods, the stability is ensured by stopping
the iterative process at the point where the errors in predicting the exact
solution start increasing. Thus, regularization is achieved by truncating the
iterative process after a specific number of iterations and the number of
iterations performed acts as a regularization parameter. Also for these iterative
algorithms the discrepancy principle may be used for choosing the
regularization parameter by stopping the iterative process when

kCX k 2 dk < d ð48Þ

where X k is the numerical solution obtained for the discrete problem (45) by
substituting in the vector X the boundary values of the heat flux and of the
temperature calculated by the iterative method considered after k iterations.
Thus, for the iterative methods regularization is achieved by matching the
number of iterations to the level of noise in the problem. For all the
regularization methods considered in this paper, the regularization parameter
was chosen using the discrepancy principle.

5.3 Comparison of the numerical results
It is the purpose of this section to present and compare the numerical results for
the Cauchy problem, obtained using the four regularization methods mentioned
earlier. In order to investigate the stability and the regularization properties of
the methods considered, the boundary data f ¼ TjG1

was perturbed as follows:

~f ¼ f þ t ð49Þ

where t is a Gaussian random variable with mean zero and standard deviation
z ¼ ðs=100Þmaxj f j generated by the NAG routine G05DDF (NAG Fortran
Library Manual, 1991) and s is the percentage of additive noise included in the
input data TjG1

in order to simulate the inherent measurement errors.
The numerical results presented in this section were obtained using N ¼ 160

boundary elements. Various number of boundary elements were tested, but it
was found that no substantial improvement in the numerical solution is
obtained, if the number of boundary elements is increased above N ¼ 160:

The TSVD and Tikhonov regularization methods were applied to the
overdetermined system of linear equation (45) in order to simultaneously
retrieve the temperature and the heat flux on the boundary G2. Figure 1(a) and
(b) shows the numerical solution obtained by using the TSVD and the Tikhonov

HFF
13,5

540



regularization method, respectively, for the temperature on boundary G2 for
various levels of noise s [ {1; 3; 5}: It can be seen that as s decreases, the
numerical solution approximates better than the exact solution while
remaining stable. If the level of noise is not too big, then the numerical
solution obtained by TSVD is a good approximation for the exact solution.

We note that the numerical solution obtained by the Tikhonov
regularization method is less accurate than the numerical solution obtained
by the TSVD method, but it is still a reasonably good approximation to
the exact solution of the problem since we have solved a highly ill-posed
problem.

Although, not presented here, it is reported that for both the TSVD and the
Tikhonov regularization methods, the discrepancy principle was found to be
very efficient in choosing the optimum value of the regularization parameter,
i.e. the level of truncation for the singular values of the matrix C and

Figure 1.
The numerical solution
for the temperature on

the boundary G2

obtained by using (a) the
SVD method, (b) the

Tikhonov regularization
method, (c) the conjugate

gradient method and
(d) the iterative

alternating algorithm
described in Section 3.4

for N¼160 boundary
elements and various

levels of noise, namely,
s ¼ 1 per cent ð†Þ;

s ¼ 3 per cent ðWÞ and
s ¼ 5 per cent ðþÞ; in

comparison with the
exact solution (–)
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the parameter l. Numerous other test examples have been investigated and it
was found that both the TSVD and the Tikhonov regularization methods
produce a convergent and stable solution with respect to decreasing the
amount of noise. However, the TSVD was found to produce in general more
accurate results than the Tikhonov regularization method.

The conjugate gradient method and the alternating iterative algorithm
described in Section 3.4 both require an initial guess to be specified for the
temperature on the boundary G2. This initial guess is improved at every
iteration and approaches the exact solution. Therefore, the rate of convergence
and the accuracy of these methods clearly depend on how close to the exact
solution is the initial guess specified. Since the temperature at the end-points of
the boundary G2 is known, the most natural initial guess is a function, which
ensures the continuity of the temperature at these points and is a linear
function with respect to the angular polar coordinate u. For the test example
considered in this paper, the initial guess is given by the constant function
u0 ¼ v0 ¼ 1:

The numerical results for the temperature on the boundary G2 obtained by
the conjugate gradient method for various levels of noise are presented in
Figure 1(c) in comparison with the exact solution and the initial guess specified.
It can be seen that the numerical solution is not accurate even for small levels of
noise. We note that the test example considered here is a very severe test
example for iterative methods since the exact solution is very far from the most
natural initial guess available. Numerous test example have been investigated
and it was found that the conjugate gradient method produces good results for
simple test examples for which the initial guess is not very far from the exact
solution. However, for more difficult test examples, as the one presented in this
paper, the method failed to produce accurate results for the unspecified
boundary data.

A detailed BEM numerical implementation of the alternating iterative
algorithm presented in Section 3.4 was given in Mera et al. (2000). It was shown
that a substantial improvement in the rate of convergence is obtained by
relaxing the marching condition

ukþ1 ¼ T ð2kþ1ÞjG2

through

ukþ1 ¼ wT ð2kþ1ÞjG2
þ ð1 2 wÞuk

when passing from step iii(a) to iii(b), where w is a variable relaxation factor
with respect to the angular polar coordinate given by

wðuÞ ¼ Asin p
u2 a

2p2 a

� �	 

ð50Þ
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and A [ ½0; 2� is a positive constant. This relaxation procedure was found not
only to reduce the number of iterations necessary to obtain the convergence but
also to substantially increase the accuracy of the numerical solution. We note
that the same relaxation procedure was found to be very efficient in increasing
the rate of convergence also for the conjugate gradient method.

Figure 1(d) presents the numerical solution for the temperature on the
boundary G2 obtained using the iterative alternating algorithm presented in
Section 3.4 coupled with the relaxation procedure (50) in comparison with the
exact solution and the initial guess. It can be seen that even for large amounts
of noise added into the input data, there is a very good agreement between the
numerical and the exact solution for the problem. Therefore, it can be
concluded that this alternating iterative algorithm is very efficient in
regularizing the Cauchy problem considered.

We note that for both the conjugate gradient method and for the iterative
alternating algorithm presented in Section 3.4, the regularization is achieved by
truncating the iterative process at the point where the errors in predicting the
exact solution start increasing. Thus, a stable solution is achieved by matching
the number of iterations to the level of noise present in the data. Although not
presented here, it is reported that the discrepancy principle was found to be
efficient in choosing the regularization parameter also for these iterative
methods. However, it was found to be more robust for the iterative alternating
algorithm than for the conjugate gradient method.

In order to compare the four regularization method considered, Figure 2
graphically shows the numerical solution for the temperature on the boundary
obtained with each of these methods for N ¼ 160 boundary elements and
s¼ 3 per cent noise.

Figure 2.
The numerical solution

for the temperature
on the boundary G2
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It can be seen that the most accurate solution is the one given by the iterative
alternating algorithm of Kozlov and Mazya (1990). The TSVD and the
Tikhonov regularization methods both give a reasonably good approximation
for the temperature on the boundary, but TSVD was in general found to
produce more accurate results. The numerical solution obtained by the
conjugate gradient method is very poor in comparison with the numerical
solutions obtained by the other methods. However, for less severe test
examples, it was found that also the conjugate gradient method produces
numerical solutions almost as accurate as the numerical solution obtained by
the Tikhonov regularization method. The differences between the
regularization methods considered are even large, if the numerical solution
for the heat flux is sought. Figure 3 presents the numerical solution for the heat
flux on the boundary G2 obtained with regularization methods for N ¼ 160
boundary elements and s¼ 3 per cent noise.

Again it can be seen that the TSVD method outperforms the Tikhonov
regularization method while both of them produce more accurate results than
the conjugate gradient method. However, for all these three methods, the
numerical solution for the heat flux is far from the exact solution. In the case of
the heat flux, the iterative alternating algorithm of Kozlov and Mazya (1990)
was the only method that produced accurate results. It can be seen in Figure 3
that the numerical solution for the heat flux obtained by this algorithm is in a
very good agreement with the exact solution while the other methods
considered fail to produce accurate results. Numerous other test examples have
been investigated and similar conclusions have been drawn.

Figure 3.
The numerical solution
for the heat flux on the
boundary G2
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6. Conclusions
In this paper, four regularization methods were investigated and compared for
a Cauchy problem in the steady-state anisotropic heat conduction. Three of the
methods considered were general regularization methods while the fourth one
was an alternating iterative algorithm developed for the Cauchy problems. It
was found that the Cauchy problem can be regularized by any of the
regularization methods considered since all of them produced a stable
numerical solution.

However, the numerical solutions obtained by these methods differ in terms
of accuracy. It was found that the TSVD method outperforms the Tikhonov
regularization method while the latter outperforms the conjugate gradient
method. All these three general regularization methods were outperformed by
the iterative alternating algorithm described in Section 3.4. We note that for the
severe test example considered, the conjugate gradient method failed to
produce an accurate solution both for the temperature and the heat flux.
A possible reason for this is that in the conjugate gradient method described in
Section 3.3, the boundaries G1 and G2 should be disjoint non-intersecting closed
curves which is not the case for our test example considered. The TSVD
method and Tikhonov regularization methods were found to produce
reasonably accurate results for the temperature, but they were both found to
be less accurate for the heat flux. The iterative alternating algorithm of Kozlov
and Mazya (1990) was found to be the only method to produce a good
approximation for both the temperature and the heat flux.

Overall, it may be concluded that the Cauchy problem for the anisotropic
steady-state heat conduction may be regularized by various methods such as
the general regularization methods presented in this paper, but more accurate
results are obtained by particular methods such as the iterative alternating
algorithm investigated in this paper, which takes into account the particular
structure of the problem.
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